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I. INTRODUCTION

As elaborate communication systems continue to proliferate. there is an increased need for methods and tools
to assist in their design. The availability of powerful means of communication, such as satellites, makes it
possible to envision more sharing of geographically distributed computer resources. Successful sharing of these
resources depends on high-performance and reliable communication software systems.

Many different approaches have been taken for specifying communication protocols. These approaches

include programming languages, transition models, and various more specialized techniques. This report will
discuss other techniques, based on the concepts of data abstractions (or abstract data types).

Modularity and self-containment of the specifications are key in designing reliable software systems. The
concept of abstract data types provides a consistent theoretical foundation for these ideas. Recently available
tools, such as Affinn. greatly facilitate the use of these specification techniques. The purpose of this report is to
show how the design of communication protocols can benefit from these advances.

The work presented here is part of an effort involving several projects at the Information Sciences Institute for
developing formal methods for protocol verification. Various aspects of algebraic specification techniques for
communication protocols have been considered in [TSEGS 81], [Schw 81-1], and [Ben 80-21. We will
make these more precise in this report.

What is meant by proving correct the behavior of a communication protocol is explained in the following
section. Section 3 gives an overview of the algebraic technique for defining abstract data types and briefly
discusses the main features of the Affirm system. The algebraic technique will be applied to the specification of
communication protocols in Section 4, where it is illustrated with a trivial data transfer protocol. A more
significant complex protocol will be treated in Section 5.

2. VERIFYING COMMUNICATION PROTOCOLS

2.1 Layers, Protocols, Abstract Specifications

It is well known that communication systems may be structured as a hierarchy of protocol layers, each layer
providing a set of services to the users of the layer above [BoSu 80]. To specify the service of a protocol at a
given layer is to describe the input/output behavior of the layer, this usually consists of defining a certain
number of service primitives which abstractly describe the functions provided by the protocol of that layer.
For a transport service, for instance, this set of primitives may be Connect, Disconnect, Send, and Receive.

Each layer of the communication system comprises a number of communicating entities. A protocol at a given
layer may be seen as the set of rules governing the communication between entities that provide the service of
the layer. Specifying a protocol at a layer describes how the entities involved respond to the commands from
the layer above and communicate using the service provided by the layer below.

The designer need not be concerned at the specification level with a particular implementation of the protocol
but rather with an abstract view of the functions it performs. Specifications should capture only the essential
mechanisms of the protocol.

The next section clarifies what we mean by protocol verification and discusses the verification techniques
available.

1.
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2.2 Correctness Issues

Verification of communication protocols has several aspects. The goal may be to prove that the behavior of the
protocol is correct, or to verify that a protocol provides the intended service. or to prove that an
implementation of the protocol is correct. This section makes these different goals more precise.

Functional aspects

Verification of the functional aspects of a protocol is carried out on the abstract specifications. It involves
verifying that these specifications satisfy a certain number of properties characterizing the correct behavior of
the protocol. These properties may serve various purposes:

The designer of a protocol has an intuitive understanding of what is required of that protocol. After
these requirements are translated into assertions written in the same language as the specifications,
proving that the behavior of the protocol is correct verifies that the specification of the protocol satisfies
these properties.

0 The properties a protocol-must satisfy may also represent constraints in using the protocol as part of a
complex communication system. In a stepwise-refinement methodology, for instance, assumptions may
have been made about the behavior of a protocol when the upper layers of the communication system
were specified: the protocol must satisfy these assumptions.

From a formal point of view, this set of desirable properties generally may be split into static and dynamic

properties.

Staik properties (or Safely properties)

These properties ensure that no bad behavior occurs: If the system does something. does it do what it is
supposed to do? They are not concerned with whether the system actually does anything.

Static properties are most often specific to the application under consideration. They are expressed as assertions
written in the same language as the specifications, and they characterize the set of values (or global states) of
the protocol that may be considered correct.

The following is an example of a static property for a data transfer protocol: The set of messages an entity can
receive must be a subset of the set of messages that were sent to it. This property says that if there is a transfer
of messages between entities, then this transfer is correct in that messages received are among the set of
messages sent; but it does not suppose that a transfer actually occurs.

Note that the above characterization of static properties does not suppose an operational semantic for the
specifications. (We will see in Section 4 that axiomatic specifications, for instance, have no obvious operational
semantics.) If an operational semantic is defined for the specification, static properties may also address certain
operational aspects.

An example of a static and operational property is the absence of undesired deadlocks. A deadlock (or total
block) is a state of the protocol that pe-rnits no further operation. For a given protocol, some deadlocks may be
acceptable, but some others not. This property is specific to that protocol: It is static in that it does not imply
the existence of deadlocks (but rather says that if there are some, then they are acceptable terminating values):
it is operational since characterizing a deadlock needs some operational interpretation of the specification.

Dynamic properties (or Liveness properties)

These properties require that something happen during the execution of the protocol. They suppose an
operational interpretation of the specifications, and they concern the computational aspects of the system: Is
the system really doing something: will it stop after completing its tasks? Dynamic properties may generally be
formulated using the concept of state reachability.

2
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The absence of partial blocking (i.e., starvation of an entity) and the termination property (only a finite number

of computational steps are possible from the initial value) are dynamic properties.

Implementation aspects

Here, verification involves checking the adequacy of an implementation of an abstract specification. For our
purposes this means either verifying that a protocol provides a given service or proving that an implementation
of the primitives of a protocol by a set of programs is adequate. Stated more formally, two specifications. an
abstract one and a more detailed one, must be proved compatible. i.e., the detailed one satisfies all the
properties the abstract one satisfies.

Comparing two specifications requires that they be expressed in the same language. The usual first step for
these verifications is thus to exhibit a correspondence between the functions and data that appear in the
abstract specification and those that appear in the implementation. Such a correspondence is often called a
"representation function." Then, tie implementation is correct relative to the abstract specification if the
representation of any theorem of the abstract specification (via the representation function) is a theorem of the
implementation. If the abstract specification consists of a set of axioms, then it is sufficient to show that the
representation ofever axiom of the abstract specification is a theorem of the implementation.

Impe ,entation is an important issue in protocol design: the specification methods that will be introduced
later are suitable for expressing and verifying implementations. These issues are discussed at length in
[TSEGS 81] and will not be addressed here where the focus is the verification of functional properties of
protocols.

2.3 Formal Methods for Specifying Communication Protocols

Verifying the properties discussed above implies the use of a rigorous formalism for expressing the
specifications. Several formalisms have been used for that purpose, and the most widely used are discussed in
the following where they are designated as linguistic models, transition models and mixed models. The
principle and main advantages and limitations for each are briefly explained.

Lnguistic models

These methods use specification languages, usually close to regular programming languages, for expressing
protocols. A typical example of the application of this technique is [Sten 761, in which a data transfer protocol
is specified and some static properties are manually proven.

The verification techniques used with these specification methods are the usual assertion techniques for
program verification [FRoy 671 [Hoar 69, extended to parallel programs [Lamp 771. since protocols are
usually specified as sets of programs running concurrently. These methods permit compact expression of
rather complex communication systems, and the specification they produce can be easily read (everybody
knows at least one programming language or is familiar with programming).

The main criticism of using programming languages for specifying is that they usually do not permit complex
data structures and behaviors to be expressed abstractly enough. When applied to protocols, these languages
must be at a level of detail too low to be suitable for good comprehension and utilization of the specifications.
Furthermore, the verification of such specifications is often laborious due to both the low level of abstraction of
the languages used and the inherent difficulty of proving parallel programs.

Traition modds

With transition models [Boch 78] [AUYa 79] [Merl 791 [Dant 80], each entity involved in the
communication system is represented as a machine that stands in one of a number of states. Execution of
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primitives or occurrences of events are associated with state transitions of the entities. The interrelation
between entities is expressed separately [Boch 78J or using the same formalism [Dant 80].

Analysis of the properties of a system represented with such models is carried out using the existing methods
for the analysis of Petri nets or equivalent models. Several kinds of methods may be used: enumeration
methods (the set 3f composite states of the system is enumerated and analyzed using the state reachability
relation) or structural methods [LaSc 741 [ABDe 801 (using integer programming or graph analysis
techniques). These methods make it possible to check virtually any property of the system we wish to verify,
including absence of blockings and liveness properties: this is their main advantage.

The limitations of transition models are mainly the consequences of the poor kind of abstraction that they
allow to be expressed. The apparent simplicity of the representations derived with such models is often a result
of designers only representing the control structure of the system, neglecting the data transmission aspects. This
simplicity is thus generally obtained at the expense of the quantity of information put into the model. In fact, if
complex mechanisms are represented, such as the management of the sequence numbers in a transport
protocol, these models often become unmanageable either because of their size or because of the size of their
state space. This is a strong limitation, since we need formalism and automated verification techniques mainly
to express (and to verify the correctness of) complex mechanisms.

Mixed moels

Several remedies have been investigated to augment the possibilities of abstraction of the transition models:
among them are macro-nets and mixed models.

Macro-nets are built by enriching the graphic language of transition models with specific primitives such as
emission or diffusion of messages [Nutt 721 or with symbols representing complex data structures, such as
queues. Other studies, without augmenting the description language, seek to express complex systems as
interconnections of simpler systems, easy to analyze separately, and to devise methodologies for connecting
them while preserving the properties of the whole system [PoFa 76] [AABe 781.

Mixed models have two parts: a transition model that represents the control part of the system, and an
interpretation of the transitions over a set of operators working on some data structures. The interpretation
usually consists of associating with every transition an enabling predicate and an operator. The predicate is
determined by the current value of the data, and the operator expresses the transformation carried out on the
data when the transition is activated.

Macro-nets and mixed models have been widely used for specifying certain kinds of mechanisms. Nutt nets,
for instance, are very popular for representing update algorithms for distributed data bases. Mixed models
have been used for representing communication protocols [Boch 771 [RaEs 801 and, more generally, as a
model for concurrent systems [Kell 761 [Vale 77].

These extensiorw of transition models have brought some improvements in the specification phase. but their
limitations arise when verification is attempted. In both formalisms, the possibility of reachability analysis of
the "pure" transition models is lost. Little progress has been made in devising specific analysis techniques for
macro-nets; assertion techniques for parallel program proving are difficult to apply to the verification of mixed
models because they a priori allow the expression of a complex control structure.

The purpose of this report is to show that other specification methods may be used to bring about a slight
improvement over the methods already described. They are based on the formalism of abstract data types.
Section 3 presents the necessary background material for defining abstract data types algebraically, as can be
done using Affirm; specific methods for modeling communication protocols will be presented in Section 4 and
applied in Section 5.
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3. ALGEBRAIC SPECIFICATION OF ABSTRACT DATA TYPES

3.1 Abstract Data Types as Algebras

A data type may be seen as a collection of objects and a set of operations over it [GHMu 78]. Its specification
is axiomatic when the effects of the operations are expressed by axioms interrelating the objects created by
these operations. It is algebraic when these axioms have the form of equations.

Data types are abstract in that we are not concerned with a particular implementation of the objects (e.g.,
F integers as represented in some machines or stacks as implemented by arrays), but instead with their abstract,

logical nature.

Liskov and Zilles [LiZi 75] discuss several methods for defining abstract data types. Here only the "algebraic
axiomatic" method is considered. With this method, properties of the operators are expressed by axioms in the
form of equations, Data types may then be seen as algebras. For a complete statement of the algebraic method
for specifying abstract data types, see [GuHo 78] [GTWa 78] [GHMu 78] [Muss 80-1]. Familiarity with
the concepts and methods developed in [GHMu 78] (at least) is assumed in what follows.

Synthetically, defining an abstract data type defines a first order theory. A theory consists of a language, a set of
axioms, and a set of inference rules. The language is defined once we provide symbols for domains, variables,
and operators, and define the syntax and typing of the operators and the typing of the variables. Here axioms
are equations, and inference rules are substitution and replacement of equals. Interpretations of these theories
are algebras (in this case, many sorted algebras).

Issues in these theories are logical consistency, validity, and completeness. These are discussed at length in the
literature.

3.2 The Affirm System for Creating Abstract Data Types and Proving Their Properties

Preseatidoa

The Affinn system developed by the Program Verification project at Information Sciences Institute includes:

" A language that permits the definition of axiomatic abstract data types. These user-defined data types
may be used in programs written in a language close to Pascal.

" A natural deduction theorem prover that enables proving either properties of the defined data types or

verification conditions for the programs.

It is out of the scope of this report to detail the characteristics of this data type manipulation system. However,
a brief summary of the main commands is given in Appendix 1: it explains briefly the type definition
commands and the proof development commands needed for a good understanding of the experiments that
will be presented later. Musser [Muss 80-1], Gerhart [Gerh 801, and Thompson [TGELB 81] should provide
any necessary additional information.

The next few paragraphs discuss some issues concerning algebraic specification of data types in general and
w th AffIrm in particular. These comments should provide help in understanding how these methods are used
in the following sections.
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Defining types in Affirm

The main characteristic of Affirm is that axioms defining the operators of the types have the form of rewrite
rules. The relationships between term-rewriting systems and algebras are discussed in [HuOp 80]: rewriting
rules may be seen as "oriented equations." These rules ha~e the following form:

terml = = term2:

where terml and term2 are symbolic terms of the same t)pe. The symbol = - is the rewriting symbol. This
rule is interpreted as follows: any term matching term I is to be replaced by term2.

To allow a certain kind of conditional results, an if-then-else operator whose result is of the type being
currently defined is part of the definition of every type. It is used in the following fashion:

terml= = if cond then term2 else term3:

where terml. term2, and term3 are terms of the type being defined and cond is a boolean term.

If-then-elses can appear only on the right-hand side of the rewrite rules. Furthermore, they obey the following
axioms (which never appear in the print-outs of the types):

ifTRUE then term2 else term3 = = term2;

if FALSE then term2 else term3 = = term3:

Affirm allows users to interactively define its private data types. Besides syntax verifications (number of
arguments and types of the operators, as in their interface declarations), the system offers some more specific
help when the user is entering axioms: these aids are described below.

Aids from Affirm while specify'ng types

The two key concepts in term-rewriting systems are thefiniie terminalion property (any term may be rewritten
only a finite number of times) and the unique lerminalion property (if the rewriting terminates, then identical
terms are obtained whatever the ordering in which the rewrite rules have been applied).

When a set of rewrite rules possesses these two properties (it is then sometimes called convergent). it may be
shown that "rewriting reasoning" is complete [KnBe 691. That is, two terms are equal (modulo the equality
relation expressed by the set of rules) if and only if they reduce to the same "normal form."

The finite termination property is known to be undecidable the unique termination property may be verified
for finitely terminating term-rewriting systems. The system therefore cannot assure convergence when new
axioms are entered, but it does something close to that in practice:

" When a new axiom is introduced, it is first checked to ensure that it does not possess some property that
trivially implies nonfinite termination. If it does not satisfy any such property, the finite termination
property is assumed for the set of rules augmented with the axiom. Some of these properties are easy to
state and to check, and it is unlikely in practice that a user would state an axiom that could destroy the
finite termination and not satisfy one of these sufficient conditions.

" Once the finite termination is assumed, Affinn proceeds to the verification of the unique termination.
This procedure may cause the system itself to introduce new axioms for restoring the unique
termination property, in case the entered axiom destroyed it. This procedure is based on the algorithm
devised by Knuth and Bendix [KnBe 691. Addition of new rules by the system is carried out
interactively in Affirm (two terms are proposed and the rewriting direction is given by the user): this
process was automatic originally but required definition of an ordering for the terms.

A last verification provided is logical consistency: the last axiom introduced by the user is discarded if an
inconsistency is discovered during the verification of unique termination.

6



Proof theory, generators, and structural induction

A binary operator of Boolean result, denoted as the equality, is defin d for each type. The following axiom is
implicitly part of the definition of every type:

x=x = = TRUE:

where x is a variable declared to be of the type being defined and TRUE is a constant of the type Boolean.

Propositions are, in the Affinn context, Skolemized tenns of type Boolean. Proving a proposition involves
reducing it to the constant TRUE of type Boolean, using for that purpose the rewrite rules entered as axioms
and specific inference rules called induction schemas, (which are part of the definition of the type to which
they apply and are used in proofs on explicit demand from the user).

Theorem proving in Affirm is interactive. The system does the laborious part of the proofs (substitutions, proof
context management, type checking, etc.), but the user has to develop the proof. A set of proof development
commands allows the user to apply various commands for splitting the proposition into several subgoals,
adding clauses to the proposition, applying previously proven lemmas, applying specific induction schemas,
and substituting equalities (some of these commands are briefly documented in Appendix 1). Some predefined
proof strategies, discussed in [Muss 80-21, may also be invoked.

We said previously that "rewriting reasoning" is complete for convergent sets of rewrite rules. But such a nice
property may not always be achieved in practice, and additional inference rules, specific to each type, must
often be used in proofs. We explain below how one can derive such rules.

Let us call all operators whose result is of type T generators of type T. and all operators without argument
whose result is of type T constants of type T. (The definition of a constant is actually more complex, but this
approximation will suffice for giving an intuitive understanding of structural induction.) A proof by structural
induction of a property P(x) (x being a variable of type T) will consist of proving the conjunction of the
following properties:

P(C). for all constants C of type T:

P(x) implies P(Gen(x)), for all generators Gen of type T which are not constants.

In practice. the set of generators we must consider as part of an induction proof may be reduced to a set of
"fundamental generators" (sometimes termed "constructors"). This set can be characterized as follows: it is the
smallest set of generators such that all terms of type T may be shown equal to a term containing only generators
of that set.

A complete justification of these induction schemas should make use of the sufficient completeness property
for axiomatization presented in [GuHo 78]. Examples of specific induction schemas will be presented later
with examples of type specifications.

An exanple of a type definition in Affirm

Appendix 2 contains the definition of several data types. The second part of Appendix 2 contains the definition
of the type SequenceOjlemntpe from the Affinn type library. The sequence structure is fairly general, and the
structures of stack or queue may be seen as restricted sequences.

3.3 Building Complex Data Type Theories

Though no general method encompasses the construction of arbitrarily complex theories, some theory building
techniques are worth having: they let the user build complex specifications in a more structured way. Some of
them are discussed here together with some additional issues of algebraic specifications: most ideas about
structured theory building are taken from [BuGo 77).

7



Hierarchy of theories

We may distinguish between several layers of theories, for instance, the theory of integers and the theory of
stacks of integers. Though the former is formally included in the latter. it is convenient to build the theory of
integers separately as we may wish to use it later as a subtheory of another complex theory, such as set of
integers or queue of integers.

An operator belongs to the theory of a type, say T, if at least one of its arguments or its result is of type T. It
may happen that not all generators of a type are defined in its theory. The length of a sequence, for instance, is
of type integer but will be defined within type sequence.

Parameterized types, instantiations and replications of types

Though distinct, several theories may share the same structure: we may define, for instance, the theories stack
of inlegers and slack of messages. Though their components are distinct (assuming that types integer and
message are distinct types), these theories will share the same stack behavior. The stack structure could be
defined more abstractly as the parameterized type stack of elements, where element is a nondefined, arbitrarily
named type. Building the type stack of integers would then consist of instantiating elements by the type
integer in the stack of elements theory.

Construction of explicitly parameterized types is not yet allowed in the Affirm system. This would require all
"low level" types to be defined when defining a type using them (it is a scheduled improvement). These
constructions may. however, be mimicked with sufficient rigorousness.

Replication of types is another way of building types that share the same structure. It is just a replication of
their theories, since they have the same forms but are different instances.

Enrichment of theories

Several theories may share some subtheory but ultimately be different. For instance, the types sequence of
integers and sequence of messages share the basic sequence operators and behavior, but the type sequence of
integers may include some specific generators such as the sum or difference of two sequences.

Assuming that we have the parameterized type sequence of elements, the type sequence of integers may be
built by first instantiating the type sequence of elements as sequence of integers and then enriching this last
theory with the specific operators.

Hidden functions, exception handling

It has been shown that operators not explicitly needed must sometimes be introduced for expressing the
behavior of needed operators with only a finite number of equations. These operators are often referred to as
hidden or auxiliary operators. Besides this theoretical reason, auxiliary operators may also be introduced
simply as abbreviations, to simplify the expression of the needed operators.

Not every application of an operator to its arguments may give a meaningful result (for instance, extracting the
first element of an empty queue). If such applications may occur, then we must consider them, for example by
including error specifications and error handling in the axiomatic specification, as done in IGHMu 781 and
[Gogu 771.

Another way to proceed is to leave such erroneous terms unspecified. This should not cause any trouble other
than affecting the completeness of the defined theory. That is, if we leave some terms unspecified, we will
surely have propositions that we will not be able to show TRUE or FALSE. This is the choice made in this
report.

8
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4. ALGEBRAIC SPECIFICATION OF COMMUNICATION PROTOCOLS

4.1 Communication Protocols as Complex Data Types

In this discussion, protocols are viewed as complex data structures. The initial data (i.e., the constants, of which
we will usually define only one) and the data resulting from application of the operators will constitute the set
of values, or global states, of the type protocol.

These global states may include the current contents of the data storage components of the system as well as
some information about the history of the computation. The usual concepts of control and data are not part of
the specification language, but may be expressed within this global state notion.

Most of the time protocols will have a structure of type record (in the sense of a record in Pascal). Various
selection functions will permit the different fields of the elements of type protocol to be extracted. We will not
usually define an explicit constructor for the record, in order to allow the specifications to be enriched by
adding new selectors.

The first step in specifying a protocol as a data type is to devise a set of selectors and a set of generators for it:

" Selectors may be seen as value-returning functions. Selectors do not modify the values of the protocol,
which are known only through the set of selectors.

° Generators modify the current value or create values. They correspond to the primitives of the protocol;
one of these generators will be a constant that defines an "initial value" for the protocol.

The behavior of the protocols will be expressed by a system of symbolic identities, much like arithmetical
identities. These equations are axioms, rule lemmas, or definitions in the Affirm context, and will be treated as
left-to-right rewrite rules. These axioms, besides defining an equivalence relation, are thus also "simplification
rules" for the terms.

One expression is derived for each selector/generator pair. Each expression defines the symbolic value of the
particular field of the global state that the selector addresses, after application of the generator. These
expressions v. ill have one of the following general forms:

For all constant generator Const:

lthSelector(Const) = =thSelectorlnitialValue;

For all nonconstant generators:

IthSelector(JthGenerator(p)) = = if SomeCondition(p)
then NewExpressionOflthSelector(p)
else lthSelector(p);

where p denotes the current value of the protocol.

Though all axioms have one of these forms, we will simplify the expressions for which
NewExpressionOflthSelector(p) is identical to IthSelector(p). These "no change" axioms have the simple
form:

lthSclector(JthGencrator(p)) = = lthSelector(p);

An alternative method for specifying record data types is to employ an explicit constructor function for the
record and to give one axiom per generator instead of one per selector/generator pair. This axiom would
express in a unique equation the transformations that the generator induces on all the selectors. We believe the
former method (of individually expressing the transformations on the selectors) is preferable since, although
many more axioms are needed, they have a simpler structure and lead to more readable specifications.

9



Protocol specifications must include specific induction schemas which have the following general form:
Protocollnduction(p) =

cases( Prop(] stConst).

Prop(MthConst),
all pp(Prop(pp) imp Prop(lstGencrator(pp))),

all pp(Prop(pp) imp Prop(NthGenerator(pp))) );
where Const denotes the constants of the protocol (generally, only one will be defined), Generators are all the
nonconstant generators, and Prop denotes the proposition to be proved by induction.

4.2 The SimpleProtocol Example

SimpleProtocol is a very simple data transfer protocol that will be used as an illustrative example for the
specification and verification methods we demonstrate in this section. A more significant, complex data
transfer protocol will be treated in Section 5.

SimpleProtocol transfers a sequence of messages from a fixed sender to a fixed receiver over a perfect
transmission medium.

It has three selector functions defined:

ToSend, which denotes the sequence of messages not yet sent.

Transit, which gives the sequence of messages held by the transmission medium.

Received, which holds the sequence of messages received by the receiving entity.

Three generators represent the primitives of the protocol:

" InitialProtocol is a constant of the type. Its meaning is the "initial value" of the protocol, before transfer
is executed. InitialProtocol initializes the field ToSend with a (symbolic) constant sequence of messages
and initializes the fields Transit and Received with empty sequences of messages.

* Sendsends a message over the transmission medium for delivery to the receiving entity; if there are still
messages to be sent, it picks the first and gives it to the transmission medium for delivery to the receiver.

* Receive accepts messages from the transmission medium; if some messages are in transit, it picks the
first and appends it to the received messages.

The axioms must express the above meanings as transformations of the values of the selectors after each
generator is applied.

In order to prove the propositions that assert the correctness of the protocol, an induction schema must be
included in the specification. It states that proving a property Prop(p) of the protocol is equivalent to proving
the following:

Prop(InitialProtocol)
and (Prop(p) imp Prop(Send(p)))
and (Prop(p) imp Prop(Receive(p))):

where p denotes a variable of type protocol.

The protocol is formally defined as the type SimpleProtocol and is built upon the types Boolean. Integer,
Message, and SequenceOflfessage. The first two are built-in types of the Affirm system; the construction of
the last two is explained in Appendix 2.
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Thc Boolcan operators PreSend and PreRccci~e appcar in the specification only as abbreviations. The formal
definition of the type SiinpkProiocol. as submitted to Affirm, is the following:

ty'pe Simiplellrolocol:

needs types Alessage. SequenceCflessage,

declare dummy, p, pp: Siniplefroiocol:,

interfaces ToSend(p). Transit(p). Receivcd(p). InitialSequenceOfMessage: SequenceOl~fessage;
interfaces lnitialProtocol. Send(p). Receive(p): SionpleProiocol;

interfaces PreSend(p). PreReceive(p), SimpleProtocollnduction(p): Boolean;

axioms

dummy = dummy = TRUE,

PreSend(p) = = ToSend(p) - = NewSequcnceOfMessage.
PrcReceive(p) = Transit(p) -= NewSequenceOfMessage;

axioms

ToSend(lnitialProtocol) I nitialSequcnceOfMesszge,
ToSend(Send(p)) = = if PreSend(p)

then LessFirst(ToSend(p))
else ToSend(p).

ToSend(Receive(p)) ==ToSend(p):.

axioms
TransiiqlnitialProtocol) ==NewSequenceOfMessage,

Transi(Send(p)) = = if PreSend(p)
then Transit(p) apr First(ToSend(p))
else Transit(p),

Transit(Receive(p)) ==if PreReceive(p)
then LessFirst(Transit(p))
else Transit(p):

axioms

Received(lnitialProtocol) = NewSequenccOfMessage.
Received(Send(p)) = Received(p),
Received(Receive(p)) = if PreReceive(p)

then Received(p) apr First(Transit(p))
else Received(p),

schema

* SimpleProtocollnduction(pp) ==cases(

Prop(lnitialProtocol),
all p (Prop(p) imp Prop(Send(p))).
all p (Prop(p) imp Prop(Receive(p))))

end {SirnpleProtoco(}:

4.3 Proof of Correctness (Nonoperational Aspects)

In Section 2 we distinguished two classes of functional properties: static and dynamic. The following discusses
the expression and proof of static properties that do not involve operational aspects (or progress in the
computation).



It is assumed that the system represented has to satisfy a set of assertions characterizing the class of functionally
acceptable values of the protocol. (As discussed in Section 2. these assertions may be stated by the designer or
may represent assumptions made about the behavior of the protocol at higher specification levels.) In practical
cases, only particular aspects of the system arc of some functional value, so the designer wants to leave a wide
latitude for implementation by expressing the requirements of the system at an abstract level. Correctness
assertions should capture only the fundamental functions of the system.

For the SimpleProiocol protocol presented previously, these properties should specify that the data transfer, if
done, be done correctly. That is. the sequence of messages received is always an initial subsequence of the

sequence of messages that were initially to be sent.

This may be written as follows:

theorem TransferCorrect,
Received(p) = lnitial(InitialSequenceOfMessage,Length(Received(p))):

(Initial(sk) is an operator of type SequenceOjflessage that gives the initial subsequence of length k of
sequence s.)

This assertion may be verified using the properties of the type SequenceOfltfessage and the following lemma:

theorem Transferl]emma.
(Received(p) join Transit(p) join ToSend(p)) = InitialSequenceOfMessage:

(The join operator is the concatenation of two sequences of messages.)

TransferLemma implies that no messages are lost or added during the transfer and that they are kept in the
sequence constituted by the concatenation of sequences Received. Transit. and ToSend. in the same order they
had in the sequence InitialSequenceOfMessage. This lemma may be proven easily by using the induction
schema specific to the type SimpleProlocol and the properties of the type SequenceOJAefessage.

The proof transcripts of these theorems may be found in Appendix 3.

4.4 Enabling Conditions and Operational Interpretation

In Section 2 it was mentioned that desirable properties of communication protocols should include certain
properties. static or dynamic, of an operational nature. We have not yet given any explicit operational
interpretation to our axiomatic specifications: to do so is the purpose of what follows.

It is clear that the rewrite rules in the specifications may be used to compute. We will show here how the set of
rewrite rules that constitutes the definition of the type SimpleProtocol may be seen as an algorithm that
computes a final value of the protocol from the initial value lnitialProtocol, by using the generators Send and
Receive applied in any order.

For that final value to exist, a necessaiy condition is that its computation stops: this is not the case if the
function we associated with the specification is defined as it is in the statement above. The reason is that all
generators may always be applied from all values of the protocol, since in rewriting systems, no conditions may
be stated for the application of rewrite rules (the only and implicit condition is "pattern matching"). To express
conditional application of the generators, we have to make enabling conditions explicit and give an operational
interpretation for the specification outside the axiomatic definition.

Let us first note that one can always find predicates PreGcen such that all generators Gen of the SimpleProtocol,
except the constant InitialProtocol. may be written as follows:

Gen(p) = = if PreGen(p) then NewValue(p) else p;

12



where p denotes a variable of typc ShnpleProtocol. and NewValue(p) the new symbolic value of the protocol
after application of the generator Gen when condition PreGen is satisfied by p.

[his shows that nonconstant generators have an effect on the current value of the protocol only when a certain
condition, specific for each generator, is satisfied b) the current value.

For giving an operational semantic to a set of generators. we will first associate with every generator Gen.
except the constants, an enabling condition denoted PreGen. These conditions are represented by the
predicates PreSend and PreReceive in the specification of the type SimpleProtocol. No condition has been
associated with the generator InitialProtocol; we will consider that this last generator is applied only once and
that the value of the protocol is significant only after its application.

Now we can state the operational interpretation we give to the specification of the type SimnpleProtocol: axioms
of the type ShinpleProiocol compute the value F(lniialProtocol), the function F being defined as the following
nondeterministic recursive function:

F(p) =
if PreSend(p) then F(Send(p))
if PreReceive(p) then F(Receive(p))
else p:

This function is nondeterministic: if it terminates, its final value may be one of several possible final values.

The operational properties we will state for the type SimpleProtocol must actually be understood as properties
of the above function applied to the value InitialProtocol.

The main purpose of the introduction of conditions is to permit the definition of operational properties for the
protocol. From the rewriting standpoint, conditions have no meaning and may be considered as simple
abbreviations for more complicated expressions. We will say more below on what a condition should contain:
roughly, conditions are stated such that, when TRUE, the associated generator actually does something
"constructive."

4.5 Progress Properties and How To Prove Them

We will assume that it is suitable for the computation defined by our specifications to terminate: we use
terminating models for protocols rather than cyclic models. Operational correctness for terminating systems
concerns mainly the termination and freedom from undesired deadlock properties discussed in Section 2. The
conjunction of these two properties assures that the transfer of messages terminates (according to the
operational interpretation we defined), and that it terminates in an acceptable terminating state (this last
criterion is specific to the protocol).

Freedom from undesired deadlocks

Though the state of the protocol may be correct wherever the computation stops (according to some functional
correctness assertions), it should stop only in some states: the states we recognize as functionally valid
terminating states. We call this property DeadlockFreeness (shorthand for "freedom from undesired
deadlocks").

Let us denote Progress(p) as the predicate formed by the disjunction of all the enabling conditions associated
with the generators. Progress(p) is true for the value p if at least one among the enabling conditions of the
generators is true for that value: this means that a further computation step is possible from that value in the
function we associated with the specification. A deadlock is a value p such that Progress(p) is false.

Let us define Final(p) as a predicate true iff the value p of the protocol may be considered a valid terminating
value ( this value does not have to be a deadlock).

13



Freedom from undesired deadlock may then be expressed as the following theorem (which does not imply that

a deadlock is actually reachable).

theorem DeadlockFreencss, not(Progress(p)) imp Final(p):

For the SimpleProtocol example we have:

Progress(p) = = PreScnd(p) or PreReceive(p);

and

Final(p) = = Received(p)= lnitialSequenceOfMessage:

An acceptable termination value here is a value such that all messages initially to be sent have been received.

As discussed in Section 2, the DeadlockFreeness theorem is a static property and hence may be proven by
induction using the schema specific to the protocol. The transcript of its proof is given in Appendix 3.

Termination

Termination is a dynamic property: it states that a deadlock value is necessarily reached during the
computation of the function we associated with the specification. Rather than trying to state the termination
property more formally, we will focus on methods for proving it. The basic idea for these proofs comes from
Floyd [Floy 671, with the method known as the well-founded set method.

The first step is to exhibit a mapping from the set of values of the type into a well-founded set: such a mapping
is often called a measurefunction. Well-founded sets are ordered sets that contain no infinite length decreasing
sequence of elements. For example, the set of natural numbers with regular ordering or the set of tuples of
naturals with lexicographic ordering are well-founded sets: the set of all integers with regular ordering is not
well-founded.

With this mapping, proving termination involves proving that the application of any generator, when enabled
by its condition, will decrease the value of the measure function.

Termination proofs using this method may take very different forms, because the measure function that allows
the proof depends on some specific properties of the represented system. For proving that the SimpleProtocol
specification satisfies the termination property, we used a measure function defined as follows:

Measure(p) = = 2*Length(ToSend(p)) + Length(Transit(p)):
The measure function is a weighted sum of the number of messages not yet sent and the number of messages in
transit.

The termination theorem may be stated as follows for the type SimpleProocol:

theorem Termination, Measure(p) ge 0
and PreSend(p) imp (Measure(Send(p)) It Measure(p))
and PreReceive(p) imp (Measure(Receive(p)) It Measure(p)):

The first clause and the fact that the range of the measure function is of type Integer imply that the range of the
measure function is a well-founded set: the two following clauses assure that the value of the measure function
will decrease every time an enabled generator is applied.

The first clause may be proved using the properties of type SequenceOfMessage the following clauses by
themselves express an induction on the set of generators of the type and may be proved using the properties of
the types Integer and SequenceOfMessage. The transcripts of the proofs may be found in Appendix 3.
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delays for the data packets (they must be set greater than the maximum transit time). Selective repeat protocols
are primarily intended as link level protocols where the actual loss hypothesis is quite reasonable. It is clear that
they would produce an extremely slow behavior if used at the transport level in a packet switching network, for
instance.

The following presents an informal description of the primitives of the protocol. the axiomatization of the
protocol, and a discussion of the correctness theorems and their proofs. The definitions of the types in~olhed
may be found in Appendix 2. For brevity, the proof transcripts of the proved theorems are not given here: theymay be found in [Bert 80-1].

5.2 Informal Description of the Primitives of the Protocol

The elementary procedures of the protocol may be sketched as follows, where they are described as pairs:
<condition> --> <action>

An action is said to be "enabled" when its corresponding condition is true.

IniiialProlocol:

Describes the initial state of the protocol.
No enabling condition is associated. Initializes the various data structures, including the sequence of
messages to be sent, the sender's sequence number. and the receiver's sequence number.

Send:
Sends data packets to the transmission medium for delivery to the receiver.
Enabled if there is still at least one message to be sent. Forms a packet with the first of these messages and
the current sender's sequence number: gives a copy of this packet to the medium, for delivery to the
receiver, and another copy to the sender: starts a timer attached to this sequence number and increments
the sender's current sequence number.
We assume that the medium keeps track of the order in which it received the packets from the sender and
releases them to the receiver in the same order. except for the lost packets (i.e., it has a first-in/first-out
discipline for the unlost packets).

Receive:
Receives data packets from the sender through the medium.
Enabled if at least one packet is to be delivered by the medium to the receiver. Accepts the first of these
packets, gives the sequence number of this packet back to the medium for delivery to the sender (i.e.. each
packet received is acknowledged). If this packet has not been received previously, a copy is kept by the
receiver for later delivery to the user.

Release:
Releases data packets held by the receiver to the user.
Enabled if the receiver holds the next expected (by the user) data packet: delivers the message of this packet
to the user and increments the receiver's sequence number.

Update:
Keeps track of the acknowledged packets held by the sender.
Enabled if the oldest packet held by the sender has the same sequence number as the oldest
acknowledgment, deletes this packet from the sequence of pending packets held by the sender and deletes
the acknowledgment.
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Resend:

Resends the data packets whose acknowledgments havc not been received within a given time.

Enabled if the time-out of the oldest pending packet has expired: gives a copy of it to the medium for
delivery to the receiver and rccnables the time-out associated with this packet.

LosePkv:

Enabled if there is some packet in transit from the sender to the receiver: removes the oldest packet.

The losePkt and the following LoseAck operation simulate the loss of messages and acknowledgmepts by
the transmission medium.

LoseAck:

Enabled if there are some acknowledgments in transit; removes one of these from the sequence of
acknowledgments held by the medium.

In the next section. the above informal descriptions of the primitives of the protocol are translated into an
axiomatic specification.

5.3 Axiomatization of the Selective Repeat Protocol

Generators, selectors and conditions:

The protocol will be defined as the SelectiveRepea'Proiocol data type. It has a "record" structure, with a
number of selector functions and a set of generators corresponding to the primitives described above.

In the axiomatic specification, the generators are given the same names as the corresponding procedures in
Section 5.2: the conditions are given the names of the corresponding generators prefixed by "Pre" (but note
that InitialProlocol has no condition associated): the selectors are given the following names:

ToSend:

Denotes the sequence of messages to be sent.

Pending:

The sequence of packets held by the sender. Packets belonging to the Pending sequence have been sent to
the receiver, but their acknowledgments have not yet been received.

PktBuf"

Abstracts tie storage of the data packets by the transmission medium.

Received:

Denotes the sequence of packets held by the receiver. Packets belonging to this sequence have been
received by the receiver but not yet delivered to the user.

Released:

The sequence of messages delivered to the user by the receiver.

AckBuf:

Abstracts the storage of the acknowledgments by the medium.
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SSN:

Denotes the sender's sequence number.

RSN:

Denotes the receiver's sequence number.

Figure 1 should assist in recalling these names. The figure has no pretension of formality and is intended to
show, in a "data flow" fashion, the different data structures and operations involved.

Handling of time-oats

The model we use for representing the protocol does not handle time, so we have to interpret time-outs
differently. The hypothesis we made for the loss of packets (that a packet whose time-out expires has actually
been lost in transit) leads to the following abstraction for the transmission medium and the time-out functions:

* A Lost sequence holds the sequence numbers of the data packets and the acknowledgments that have
been lost.

" The first packet in the Pending sequence is the oldest sent.

* The Resend operation is enabled if the sequence number of the first packet of Pending is present in
Lost. It moves this packet from the first to the last position of the Pending sequence (reenables its
time-out) and deletes the copy of its sequence number from Lost.

" The LosePki (LoseAck) operation puts the sequence number of the first packet of PktBuf (the first
element of AckBu) in the Lost sequence.

Further hypotheses on the behavior of the medium

Although it is premature at this point, we are interested in proving termination of the data transfer. With the
chosen characteristics of the transmission medium (it may lose an infinite number of data packets or
acknowledgments), it is clear that the data transmission may never terminate.

To guarantee termination, we make the assumption that the number of items (data packets or
acknowledgments) that the medium may lose is bounded by some constant. This seems reasonable since we
don't give any fixed value to this maximum number of losses, though we suppose it bounded. This assumption
implies that correct behavior of the transmission medium ultimately resumes after periods in which it loses
items in transit. This behavior is represented in the axiomatic definition as follows:

0 A ToLose counter, initially given an arbitrary but finite and positive integer value, is decremented by
one every time an item is lost in transit.

. The enabling condition for the operations LosePkl and LoseAck are further augmented by the
requirement that ToLose be positive, and the execution of any of these actions decrements the ToLose
counter by one.

Bulding the type SelectiveRepeatProtocol, hierarchy of types

Type SelectiveRepeatProtocol

The type SelectiveRepeatProlocol is an axiomatization of the protocol described in Section 5.2. with the
hypotheses and artifacts given in Section 5.3.

To build the complex SeleciiveRepeatProtocol type, theory building operations discussed in Section 3.3 have
been used. The axiomatization of the protocol is the top level type of a hierarchy composed of types Boolean.
Integer, Message, Packet, SequenceOflnieger, SequenceOjflessage, and SequenceOfPackei. The construction
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Figure 1. I)iagram of the Selective Repeat Protocol
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of these types is briq:; described below: their formal definitions and the definition of type
SelecliveRepeaiProlocol may be found in Appendix 2.

We will make use of some Affin, library predefincd types. This library includes types Boolean. Integer. and a
set of instantiable type structures such as Queue. Set. and Sequence of ElemType (ElemTType is the parameter.
the default constituent of these data structures).

Types Integer and SequenceOflnteger

The sender's and receiver's sequence numbers and the Tol.osc counter are of type Integer. The type we used is
the Affinn built-in version: it is an axiomatization of the main facts about integers, including ordering.

The sequences Lost and AckBu f are sequences of integers. The type SequenceOfinteger has been built from an
instantiation of the Affirm library SequenceOJleinType, enriched by some operators aimed at facilitating the
expression of properties.

Types Message and SequenceO"Message

Message is a minimally defined type: it has neither generators nor selectors, and its sole axiom states that
identical messages are equal.

The sequences InitialSequenceOfMessage (the sequence of messages initially to be sent) and the fields ToSend
and Released are sequences of messages. Type SequenceO/Ifessage is a straightfcrward instantiation of the
type SequenceOfleniType from the Affirm library.

Types Packet and SequenceOfPacket

A Packet is defined as a record of an integer and a message, with two selector functions (Seq and Text) and a
constructor (Pack).

The sequences Pending, PktBuf. and Received are sequences of packets. Type SequenceOfPackel is built from
an instantiation of the SequenceOfElen Type, enriched with some additional operators.

5.4 Proof of Correctness

Correctness invariants (nonoperational properties)

Correctness assertions

The purpose of the protocol is to transmit a sequence of messages from one location to another, regardlkss of
the chosen strategy. Translated into our specification language. the correctness assertions should express that
the sequence of messages released to the user is always some initial subsequence of the sequence of messages
initially to be sent. This requirement has been proved; it is implied by the conjuncticn of theorems Output and
RSNValue presented below.

Rather than simply proving this requirement, we derived and proved a set of theorems that it seems
worthwhile to present. These theorems form a set of invariants that describes with enough precision how the
protocol behaves in such aspects as Input/Output relationships (the correctness requirement), the relationships
and interpretations of the values of the sender's and the receiver's sequence numbers, and the behavior of the
transmission medium.

In addition to characterizing the behavior of some mechanisms of the protocol, we may consider that the
invariants stated below are sufficient to convince the designer that the protocol is functionally correct. They
confirm the intuitive understanding of the protocol.
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In the interpretation of the invariants we will often refer to the "sequence of messages initially to be sent" (or
Initial Sequence). 'his sequence is a parameter of the protocol, represented as the constant
lnitialScquenceOfMcssage in the axiomatic specification. It is the initial value of the sequence ToSend and, if
the protocol behaves properly. the final value of the sequence Releascd.

For each of the theorems in the list that follows we give its formal cxpression. a short informal comment, and a
note about its proof. Theorems are separated into several groups. concerning the transmission medium
characteristics, the sequence numbers, and the input/output sequence relationships respectively.

Transmission medium characteristics

These invariants state properties of the packets in transit and of the transmission medium behavior. They make
explicit how the sequence numbers in the different storage components of the system are distributed, what
their values are, their ordering, and the number of copies of each.

theorem Rangeiransitl,
u in Seq(Pending(p) join PktBuf(p) join Received(p)) join Lost(p) join AckBuffp)
imp u < SSN(p);

The sequence number of any packet in transit is smaller than the current sender's sequence number.

Range'Fransitl has been proved by induction on the set of generators.

theorem RangeTransit2,
(u < SSN(p)) and (u > = RSN(p))
imp u in Seq(Pending(p) join Received(p)):

Any packet(s) whose sequence number is smaller than SSN and not smaller than RSN is necessarily
pending or received and not yet released: this invariant implies that no packets ever disappear completely
from the system.

Proven by induction and using the following RangeTransit3 theorem as a lemma.

theorem RangeTransit3, u in AckBuf(p) and (u > = RSN(p)) imp u in Seq(Received(p)):

If an acknowledgment not smaller than RSN is present in the transmission medium. a packet with this
sequence number is received and not yet released.

Proven by induction.

theorem nodupsTransit, nodups((Seq(PktBuftp)) join Lost(p)) join AckBuffp));

There are no duplicates in the sequence number field of the sequence of packets held by the medium
(consequently there are no duplicated packets in the medium).

Proven by induction and using RangeTransitI.

theorem nodupsSeqReceived, nodups(Seq(Received(p))):

There are no duplicates in the sequence number field of the sequence of packets received and not yet
released.

Proven by induction.

theorem nodupsSeqPending, nodups(Seq(Pending(p)));

There are no duplicates in the sequence number field of the sequence of pending packets.

Proven by induction and using RangeTransitI.
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theorem Medium. Seq(Pending(p)) Except Lost(p) = AckBuf(p)join Seq(PktBut~p)):

'his invariant states that the messages in transit and not lost are kept in the medium in the samc order as
their copies are held in the pending sequence. If we recall the association between the tocation of a packct
in the pending sequence and the order in which it was sent, this invariant implies that there is no reordering
of packets in the medium.

The Medium theorem has been proven by induction, and using RangeTransitl, nodupsScqPcnding, and
nodups*[ransit as lemmas.

SSN and RSN range iheorems

These invariants make explicit the relationships between the sender's and the receiver's sequence numbers and
interpret their values and ranges in terms of the numbers of messages to be sent and released.

theorem RSNValue. RSN(p) = Length(Released(p)):

RSNValue is proven by induction.

theorem RSNMin, RSN(p) >= 0;

Consequence of RSNValue.

theorem SSNValue, SSN(p) = Length(lnitialSequenceOfMessage) - Length(ToSend(p)):

SSN is the number of messages to be sent minus the number of messages not yet sent.

Proven by induction.

theorem SSNMin, SSN(p) >= 0;

Proven by induction.

theorem SSNMax. SSN(p) <= Length(lnitialSequenceOfMessage):

Consequence of SSNValue.

theorem SSNvsRSN. SSN(p) >= RSN(p):

Uses RangeTransitl and Induction.

theorem RSNMax, RSN(p) <= Length(InitialScquenceOfMessage):

Consequence of SSNvsRSN and SSNMax.

Input / Output relationships

These invariants relate the contents of the input sequence of messages (messages not yet sent), the output
sequence of messages (released messages) and the contents of the Initial Sequence and the values of the
sender's and the receiver's sequence numbers. Theorem Output below and theorem RSNValue above imply
the correctness requirement.

theorem Input. ToSend(p) = Lesslnitial(lnitialSequenceOfMessage, SSN(p));

The sequence of messages not yet sent is a final subsequence (whose length is the length of Initial Sequence
less the sender's sequence number) of the initial sequence of messages.

Proven by induction and using SSNMin.
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theorem TextTransit,
i in ((Pending(p) join PktBuftp)) join Receivcd(p))
imp Text(i) = pth(InitialSequenceOfMessage. Seq(i) + 1):

The text of any packet in transit is the text of the message whose rank in the initial sequence is given by the
sequence number of the packet (plus one since we choose 0 as the origin for sequence numbers and the
smallest rank is one).

Proven by induction: uses Input and SSNMin.

theorem Output, Released(p) = Initial(InitialSequenccOfMessage. RSN(p)):

The sequence released is an initial subsequence, whose length is the receiver's sequence number, of the
initial sequence. In conjunction with theorem RSNValue, Output implies that the Released sequence is an
initial subsequence of the Initial Sequence.

Proven by induction, using RangeTransitl, TextTransit, RSNValue, and SSNValue.

theorem InputOutput.
SSN(p) = RSN(p) imp Released(p) join ToSend(p) = lnitialSequenceOfMessage:

When sender's and receiver's sequence numbers are equal, any message in the initial sequence is either not
yet sent or released (and, incidentally, all messages sent. if any, have been released).

Theorem lnputOutput also implies that the ordering of the messages in the initial sequence is kept in the
Released sequence.

lnputOutput is a consequence of SSNMin, Input, and Output.

Operational properties

Operational interpretation for the SelectiveRepeatProtocol specification

As for the type SimpleProtocol, we must define an operational interpretation for the specification of the type
SelectiveRepeatProtocol. Axioms of SelectiveRepeatProtocol compute the value of the following
nondeterministic function applied to the argument InitialProtocol:

F(p) = =
if PreSend(p) then F(Send(p))
if PreReceive(p) then F(Receive(p))
if PreRelease(p) then F(Release(p))
if PreUpdate(p) then F(Update(p))
if PreResend(p) then F(Resend(p))
if PreLosePkt(p) then F(LosePkt(p))
if PreLoseAck(p) then F(LoseAck(p))
else p:

For proving operational correctness here, we closely follow the concepts and methods discussed in Section 4.
where we considered the properties of termination and of freedom from undesired deadlocks to be adequate
for protocols.

Freedom from undesired deadlocks

The desirable deadlocks are the values of the protocol for which the predicate Final is true, and the predicate
Progress is the disjunction of all the conditions associated with the constructors. The Freedom from undesired
deadlocks property can therefore be stated:

not(Progress(p)) imp Final(p):
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'he Final predicate should be true for all protocol values considered as acceptable terminating values. For the
SelectiveRepeatProtocol, a valid terminating value is a value for which the whole initial sequence of messages
hias been released to the user. In the context of type SelectiveRcwaProtocol, this predicate may be written:

Releascd(p) = InitialSequenceOfMessage:

The formulation of the DeadlockFrceness theorem is then:

theorem I)eadlockFreeness,
PreSend(p)

or PreReceive(p)
or PreRelease(p)
or PreUpdate(p)
or PreResend(p)
or PreLosePkt(p)
or PreLoseAck(p)
or (Released(p) = InitialSequenceOfMessage):

Note that this characterization says nothing about the terminating states, the content of the transmission
medium, or the various temporary storage components. If some requirements on the final state of these
components are desirable, then the Final predicate must be augmented with these.

The DeadlockFreeness theorem has been proved using the theorems InputOutput, SSNvsRSN.

RangeTransit2, and Medium.

Termination

This property states that a value of the protocol from which no progress is possible is necessarily reached in the
computation.

The proof schema we use here for proving termination of the SeleciiveRepeatProtocol is similar to the schema
we used in Section 4 for proving termination of the SimpleProlocoL Both these proofs make use of the
well-founded set method. In the context of type SelectiveRepeatProtocol, the interpretation we gave to the
measure function Measure (the function that maps the states of the protocol into the set of integers) is the
following:

Measure(p) = = (S times Length(loSend(p)))
+ (4 times ToLose(p))
+ (3 times Length(PktBuf(p)))
+ Length(AckBufp))
+ Length(Pending(p))
+ Length(Received(p))
+ (4 times Length(Lost(p)));

To prove termination, it is sufficient to prove that the value of Measure is always nonnegative and that it
decreases every time an enabled constructor is applied, as expressed by the following Termination theorem:
(The formal definitions of the conditions involved in the theorem may be found in Appendix 2, with the
definition of the protocol.)

theorem Termination, Measure(p) > = 0
and PreSend(p) imp ( Measure(Send(p)) < Measure(p)
and PreReceive(p) imp ( Measure(Receive(p)) < Measure(p))
and PreRelease(p) imp ( Measure(Release(p)) < Measure(p))
and PreUpdate(p) imp ( Measure(Update(p)) < Measure(p))
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and PreRescnd(p) imp ( Measure(Resend(p)) < Measuic(p))
and PreLosePkt(p) imp ( Measure(l.oscPkt(p)) < Measure(p))
and PreloseAck(p) imp ( Measurc(LoscAck(p)) < Mcasure(p)):

Mhe termination theorem includes its own structural induction schema. In addition, the proof makes use of the

following lemmas:

theorem ToLosePositive, "rol.ose(p) > = 0:

Proven by induction, and using ToLoseNumbPositi\e.

theorem ToLoseNumbPosiuic. ToLoseNumb > = 0:

Assumed. Tol.oseNumb is the initial value of Tolose(p), that is, the maximum number of items the
medium is allowed to lose. We can assume this number is nonnegative: this seems obvious but the
termination proof depends on this assumption.

5.5 Comments

The SelectiveRepeatProtocol experiment tested both the convenience of the specification methods discussed in
Sections 3 and 4 and the interest and feasibility ofsemiautomated theorem proving for verifying the properties
of a significantly complex protocol.

On the SelectiveRepeatProtocol experiment

Overall we have been quite satisfied with the methods devised. The example treated in the present section
shows that complex mechanisms can be satisfactorily represented and managed: furthermore, these methods
allow powerful analysis techniques.

The example chosen for this experiment has already resulted in a large-size specification, but the assumptions
we made (no bounds for the storage components or the sequence numbers, for instance) are not completely
realistic. The success of this verification convinces us that much more interesting protocol verification may be
attempted, either on real-world selective repeat protocols (see, for example, [Fast 79] for some specification
problems) or on protocols with different retransmission strategies (e.g.. the data transfer protocol in [Sten 761
or the fundamental functions of TCP [CeKa 741 [Post 801).

The reasons for choosing a protocol with this retransmission strategy to test the techniques presented in Section
4 are purely technical: For a first nontrivial experiment, this protocol seemed a good compromise between
physical complexity (the size of the specification) and conceptual complexity.

We made further experiments, focusing only on the verification of operational properties, with protocols using
"systematic retransmission" strategies, such as the protocols mentioned above. In these examples, the
transmission medium was allowed to lose, reorder, and duplicate packets and acknowledgments in transit. The
difficulty with these retransmission strategies is to prove the termination of the data transfer (assuming some
reasonable hypotheses similar to those we made for the SelectiveRepeatProtocol). These experiments are
described in [Bert 80-2] where it is shown that termination proofs for "systematic retransmission" protocols
can also be handled, although they are more complex than for the SelectiveRepeatProtocol.

As mentioned earlier, various other specification and proof experiments on communication protocols have
been carried out at Information Sciences Institute using the Affirm system with comparable specification
methods. 'rhese experiments include the alternating bit protocol (specified. proven correct, and implemented
in 'I'SEGS 81)), and a three-way handshake connection-establishment protocol [Schw 81-1] [Schw 81-2).
Specifications of higher level protocols are currently being investigated.
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On the use of mechanical theorem proving

We must distinguish between several mechanical theorem proving techniques: those that build demonstrations
and those that help the user carry them out. Affinn's theorem prover is of the latter kind: the laborious part of
the proofs is carried out by the system, but the user has to build the demonstrations and define the set of
lemmas that will lead to successful proofs.

Devising a hierarchy of lemmas for proving a "high level" theorem may require a large amount of work. One
must make the best use of both intuitive understanding of the behavior of the protocol and experience with the
verification tool for deriving lemmas that are both right and useful for the proof. The main improvement over
manual proofs seems to be that mechanical proofs are more reliable (assuming that the theorem prover is
correct): errors in a manual proof are more likely to occur in the rewriting of expressions rather than in
reasoning: rewriting is precisely what is carried out by the system.

An important issue with these methods is the cost. in user time and machine time. Machine time was not
precisely measured, but, considering that several attempts were necessary to find a set of theorems giving a
satisfying proof, the machine time ran to several (3 to 5) PDP-10 hours (the Affirm system runs on
lnterlisp-10). For the user, who was familiar with Affinn and with the properties of protocols, it took about
three weeks to complete the specification of the SeleciiveRepeatProtocol and proofs of the theorems as they
appear in [Bert 80-1].

6. CONCLUSIONS

Contributions of this report are twofold: it presents techniques for specifying and verifying communication
protocols that should offer some improvements over the methods currently used, and it constitutes an
experiment in using algebraic methods and natural-deduction theorem-proving techniques for verifying
real-world software systems.

Compared to techniques l5ased on transition models, the algebraic methods permit compact specification of
much more complex mechanisms. Abstraction is one of their natural characteristics. Furthermore, they permit
introduction of parameters in the specifications, such as the sequence of messages to be sent (nothing was said
here about its actual content: only its structure as SequenceOfIessage concerned us). or the number of
communicating entities (limited to two in the SeleciiveRepeaiProocol but systems involving an arbitrary
number of entities may be specified with little more complexity). Compared to linguistic methods, algebraic
methods have many more possibilities for abstraction, and the encapsulated and self-contained aspects of the
data type definitions greatly facilitate the verification of their properties.

The Affirm data type manipulation system used constantly in these experiments has proved to be of great
value. The Program Verification project at ISI succeeded in making a %cry powerful tool that is smooth enough
to be usable even by people unfamiliar with automated theorem proving. The mechanical verification may
appear expensive in absolute costs: however, we believe that the quality of the results and the resulting degree
of confidence in the specifications may justify this cost.

Omitted from this report were some important aspects of the specification of systems: interpretation of
concurrency and nondeterminism, implementation of these specifications, abstraction of a protocol to be used
in higher level systems, and many others. These should be considered in a more exhaustive work about
algebraic specifications.
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APPENDIX I
Affirm Main Commands Summary

AI.i Type definition commands

type TypeName:

Opens the definition of type TypeName.

edit TypeName:

Reopens the definition of TypeName for adding new material.

declare VarName {VarName}: TypeName:

Declaration of the symbols of variables and their typing.

interface OpName(ArgList) {. OpName(ArgList)}: TypeName:

Declaration of the functional symbols, their syntax and typing.

infix OpName {.OpName}:

Adds functional symbols to the list of those with infix syntax.

axioms/rulelemmas rule {, rule):

Each rule is an equation Ihs = = rhs. Adds rule(s) to the current set of rules. Affinn checks the unique
termination property of the augmented set of rules.

define rule {. rule}:

Similar to the axioms command except that these rules are applied on request from the user.

schemas rule {, rule}:

Introduces specific inference rules (induction schemas). Induction schemas must be declared as Boolean
operators. In the schemas, the inductive hypothesis may be written either Prop (it is then automatically
expanded) or IH (it is expanded on request).

theorem PropName, Proposition:

Permits giving a name to a proposition. This proposition may then be called by this identifier in the proof
commands.

end.

Closes the last open type definition.

A1.2 Proof development commands

The list of commands given in the following is fdr from being exhaustive: only the most often used proof
development commands are given.

apply/use PropName;

These commands add the proposition denoted by PropName as a hypothesis to the current proposition.
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"l'he expression corresponding to the proposition will have its variables renamed. Typically. a put command
will follow an apply command.

cases:

Raises embedded if-then-elses.
For instance,

Op(ifCond then Term I else Term2)
would become

if Cond then Op(Terml) else Op(Term2)

employ SchemaName(VarName);

Request for applying the induction schema SchemaName. lhe induction will be carried out on variable
VarName.

invoke OpName {,OpName}:

Request for expanding operators entered via the define command or the inductive hypothesis entered as IH
in induction schemas.

normint;

Applies a built-in integer simplifier tothe current proposition.

put/let Var = Exp {, Var = Exp};

Instantiates variables. Sustitutes expressions to symbols of variables in the current proposition.

replace { Exp 1, Exp}I:

If Exp appears in the current proposition as the left-hand side of an equality, substitutes the right-hand side
to all occurrences of the left-hand side in the proposition. If no argument is given, the left-hand side of the
first occurring equality in the proposition is taken as the argument.

split:

If the current proposition contains alternatives, splits it into two subgoals, corresponding to the first
alternative.

suppose Proposition;

Splits the current proposition into two subgoals:
Proposition imp Current,

and
Proposition or Current.

A1.3 Other commands

Affirm recognizes more than a hundred commands and subcommands, including the above, and program
definition and verification commands, information display commands, user profile :ommands, cession control
command, etc. All these are fully documented in [TGELB 81).
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APPENDIX 2
Construction of the Type SelectiveRepeatProtocol

A2.1 Contents

Appendix 2 contains the formal definition of the type SelectiveRepeaiProiocol and its auxiliary types.

All defined types make use of the basic Boolean and Integer types, which are built-in types of the Affirm
system:

Type Boolean is a two-valued type with constants TRUE and FALSE. It contains an axiomatization of
the well-known boolean operators not. and, or. etc. Boolean expressions are internally transformed into
if-then-else expressions as explained in [GHMu 78].

" Type Integer is an axiomatization of the usual facts about integers including arithmetic functions and
ordering. A separate Affirm proof development command (normint) makes it possible to perform
further simplifications on integer terms than the definition of the type Integer permits (this package
helps prove nontrivial facts about integers).

Affirm does not yet support the definition of parameterized types (this is a scheduled improvement): however.
it will mimic these constructions with sufficient rigorousness. The type definitions that follow (except those of
types EleniType and SequenceOfElem Type, which are straightforward Affirm print-outs) make free use of
these theory-building techniques and thus have to be seen as the mental construction of the types rather than
the full Affirm representations.

Some operators of the auxiliary types may not appear to be explicitly used in the definition or proofs of
theorems of the SeleciiveRepeatProtocol type: all types are actually considered to be autonomous.

A2.2 Types ElemType and SequenceOfElem Type

The following are print-outs of the Affirm library types ElemType and SequenceOfElenType:

El emType

ElemType is a minimally defined type. It has no generators, and the sole axiom is the equality of identical
elements.

type Elem Type;

declare dummy: Elem Type:

axiom dummy= dummy = = TRUE;

end { ElemType};

SequenceOflflem Type

The Sequence structure is rather general. The Slack and Queue structures may be seen as restricted Sequences.

type SequenceOjElemType;

needs type ElemType;

declare dummy, ss, s, sl, s2: SequenceOfflemType:jdeclare k, ii. i, il. i2, j: ElemType,
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declare k: Integer

interfaces NcwSequenceOffilemnType, s apr i. i apt s, seq(i). si join s2. I essFirst(s), LessL.ast(s):
Vequ ence~jr- lem Type.
infix join. apt. apr:,

interfaces isNcw(s). First] nduction(s). Induction(s), NormalForm(s). i in s: Boolean:,

infix in:

interfaces First~s). Last(s): ElerniType:

interface Length(s): Integer

interface pth(s, k): ElemType,

interfaces nodups(s): Boolean:,
interfaces dedup(s), lnitiai(s, k), Lesslnitial(s. k), deietepth(s. k): Sequeiice~lyleinTjpe;

axioms
dummy=dummy =TRUE,

NewSequenceOfElernType = s apr i = = FALSE,
s apr i = NewSequenceOfflernType = = FALSE,
s apr i = sl apr il ==((s=sl) and (i =il)).

Sapi NewSequenceOfElemnType == NewSequenceOffilemnType apr i.
i ap (s apr il) =(i ap s) apr il,
seq(i) = NewSequenccOfElemType apr i,
NewSequenceOfElemType join s = = s
(s apr i) join si = = s join (i api si),

LessFirst(s apr i) == if s = NewSequenceOfElemType
then NewSequenceOfElemType
else LessFirst(s) apr i,

LessLast~s apr i) = = s,

isNew(s) = = (s = NewSequenceOfflemnType),

in NewSequenceOtElemType = = FALSE,
in (s apr il) = = (i in s or (i =il)),

First(s apr i) = = if s = NewSequenceOfflemnType
then i
else First(s),

LAst(s apr i) = =

A Lenot(NewSequenceOfElemnType) ==0,

Length(s apr i) = = Length(s) + 1,
nodups(s apr i)= = (nodups(s) and -(i in s)),
nodups(NewSequenceOfEleniType) = TRUE:

rulelemmas
NewSequenceOfEiernType = i api s ==FALSE,

i apl s = NewSequenceOffilemnType = FALSE,

$ join (si apr i) = = (s join si) apr i,
s join NewSequenceOfElemType = = 5
(i api sl) join s2 = i api (si join s2),
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(s join (i api s1)) join s2 ==s join (i apt (sI join s2)),
s join (si join s2) == (s join l S) joinl s2.
LessFirst(i apI s) = = s,

LessLast(i apt s) = = if s = NewSequenceOt'Eleml'ype
then NewSequenceOtElemTypc
else i api LessLast(s).

i in 0lapt s) == (i in sor 0i=ilMY

First(i apt s) = t,

Last(i api s) = if s = NewSequenceOf~lemType
then
else Last(s);,

define
Initiai(s. k) =if (s = NewSequenceOtlikmType) or (k <= 0)

then NewSequence~fElemType
else First(s) apt Initial(LessFirst(s), k-1),

Lesslnitial(s. k) ==if (s = NewSequenceOfF-lemType) or (k <= 0)
then s
else LesslIn itial(LessFirst(s), k-i).

deietepth(s, k) ==if k <(= 0
then s
else if k= 1

then LessFirst(s)
else First(s) api deletepth(i.essFirsos), k-i),

pth(s, k)=if k= I
then First(s)
else pth(LessFirst(s), k-i);

schemas

Firstlnduction(s) =casds(

Prop(NewSequcnccOfElemType),
all ss. ii (IH(ss) imp Prop(ii api ss)))

induction(s) = cases(
Prop(NewSequenceOfElemType),
all ss, ii (IH(ss) imp Prop(ss apr ii)))

NormalForm(s) ==cases(

Prop(NewSequenceOfElemType),
all ss. ii (Prop(ss, apr ii)))

end {SequenceOJElemType};

A2.3 Type SequenceOf Integer

Sequence~jfiiieger is an instantiation of the Afln library SequenceOjElepnType enriched by two operators
whose formal definitions are the following:

edit SequenceOjleger,
declare k,k': Inlege,

declare s,s':Sequence~flnieger,
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interfaces s Delete k. s Except s':Sequenice~flnieger

infix Delete, Except:,

axioms

New.5equenceofineger Excepts = = NewSequence~fliaeger.
s Except NcwSequenceOflnteger= = s,
NcwSequence~flnieger Delete k = = New Sequence~fieger.
(s apr k) Delete kV=if k =k'

then s
else (s Delete k) apr k:

define

(s apr k) Except s'= =;f -, in s'
then s E. cpt s'
else (s Except s') apr k-,

end:,

Except removes from the sequence it has as its left argument the elements belonging to the sequence it has as
its right argument; D.Jete deletes frm the sequence it has as its left argument the last occurrence of the
element it has as its right argument.

The complete Affinm definition of type Sequence~flieger is the definition of type Sequeiice~fflem Type int
which occurrences of Elem Type are replaced by Integer, augmented by the above part of the theory.

A2.4 Types Messae and Sequence~fiessage

Message

Message is a minimally specified type: it has no generators and its only axiom states the equality of identical
messages. It may be defined as a replication of ElemnType.

Sequence~jitessage

SequenceOl~fessage is a straightforward instantiation of the Affirm type library Sequence~fl~lemType; its
definition is the same as SequenceOff~lein Type in which occurrences of Elem Type are replaced by Message.

A2.5 Types Packet and SequenceOfPacket

Packet

A packet is defined as a record of an Integer and a Message, with an explicit construction operator Pack and
two selection functions Seq and Text.

4 Selectors Seq and Text extract the Integer field and the Message field of a packet respectively: the constructor
Pack builds a packet from an integer and a message.

Type Packet is defined as follows:

type Packet;

needs type Message,
declare dummy, p: Pac ket;
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declare i: Integer
declare m: Alessage:

interface Pack(i, in): Packet-,

interface Scq(p): Integer

interface Text(p): Alessage:

axioms

dummy= dummy = = TRUE,
Seq(Pack(i, in)) == i,
Text(Pack(i, in)) m-=

end-,

SequenceOfPacket

Type SequenceOf~ackei is built from an instantiation of the Affirm library SequenceOfEleinType enriched by
the operators Text, Seq. Except, and Such. Text and Seq extract the integer field and the message field of a
sequence of packets respectively:. Except is defined as in Sequence~finieger, and Such extracts from a
sequence of packets the last packet with a given sequence number. These operators are formally defined as
follows:

edit SequenceOfPacket,

declare k: Integer

declare ii. i, ii, i2, j: Packet;

declare ss, s, si. s2: Sequence OlPacket;

interfaces s Except s', s Delete i:SequenceOjPacket;

infix Except, Delete;
interfaces Such(s~k):Packei:,

interface Seq(s):Sequence~floleger

interface Text(s): SequenceOj~lfessage;

axioms
Such(s apr i,k)= if k =Seq(i) then i else Such(s,k),

NewSequenceOfPacket Delete i = = N ewSequenceOfPacket,
(s apr i)Delete j = = if i =j then s else (s Delete j) apr i;

I Such(s~k) extracts from the sequence s a packet with a given sequence number k. The sequence s is
supposed to hold such a packeLl

{Delete is defined as in type Sequence~flnieger.}

axioms
Seq(NewSequenceOfacket) = NewSequenceOflnteger,

4 Seq(s apr i) = = Seq(s) apr Seq(i).
Seq(i api s) = = Seq(i) api Seq(s).
Seq(sI join s2) = = Seq(s]) join Seq(s2).
Seq(LessFirst(s))= = LessFirst(Seq(s)),
Seq(First(s)) = = First(Seq(s)).
Seq(LessLast(s)) = = LessLast(Seq(s)).
Seq(Last(s))= =LAst(Seq(s));
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I Scq(s) extracts thc sequence number field of a ScquenceOfl'acket. the sequence number field of a
Sequence~jPacket is the sequence of integers constituted by the sequence number fields of the
individual packets in the SequenceQfl'acket.)

'jxiomis

Text(NewScquenceOf~ackct)= = NcwSequcnceOfMessage.
Trext(s apr i) = = Text(s) apr Text(i).
Text(i apI s) = = Text(i) apI Trext(s).
*rext(sl join s2) = = Text(sl) join Text(s2),
Text(LessFirst(s)) = = LessFirst(Text(s)).
Text(First(s)) = = First(Text(s)),
Text(Lesstast(s)) = = LessLast(Text(s)).
Text(Last~s))= = Last(Text(s)):,
I Text(s) extracts the message field of a Sequence~jPackct: the message field of a Sequence~fl~ackei is
the sequence of messages constituted by the text of the individual packets in the Sequence~fl~acket.}

axiom

NewSequenceOfPacket Except s= = NewSequenccOfPacket:,

define

(s apr i) Except s' = = if i in s'
then s Excepts'
else (s Except se) apr i:

I Except is defined as in Sequence~flieger.)

end:,

It may be noticed that we gave the same names to distinct functions belonging to the definitions of different
data types. This does not lead to any ambiguity, the types of the arguments of the functions suffice to
distinguish between them!

A2.6 Type SelectiveRepeatProtocol

The definition of the type Selectii'eRepeatProiocol is given in the sequel. The set of axioms in the definition
contains an important number of "no change" axioms, axioms that just say that some selectors are not modified
by the application of some generators. In order to make the specification more readable, we use in the
following definition a "pseudo generator" denoted Others(p). Any axiom containing this "generator" must be
interpreted as denoting the set of axioms obtained by substituting to Others all generators that never appear
elsewhere in the specification in this context.

Type SelectiveRepeatProtocol is defined as follows:

* type SelectiveRepeatProtocol;

needs types Sequence~flieger, Message, SequenceQ, Message, Packet, Sequence~iffacket;

declare p. pp: SelectveRepeatroiocol

declare si, s2: Sequence~fiessage,
declare s, s': SequenceQ/Packet;

interfaces

InitialProtocol, Send(p), Receive(p), Release(p), Update(p), Resend(p), LosePkt(p), LoseAck(p):
SelectiveRepeatProlocoI:

Interfaces
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I nitialSequcnccOfMessage. ToScnd(p). Relcascd(p):SequeiiceOJxlessage-

interfaces

Pcnding(p). PktBuf~p). Rcccived(p):SequenceOff'acket:

interfaces
Ackllufp), Lost(p): Sequence~flineger

interfaces

ToLoscNumb, SSN(p). RSN(p). Tol .osc(p): Integer

interfaces

PreSend(p), PreReceivc(p), PrcRelcasc(p), PreUpdate(p), PreResend(p). Prel-oseftt(p),
PreLoseAck(p): Boolean;

interface

SelectiveRcpeatProtocoll nduction(p): Booleat.

axioms

PreSend(p) = not(ToSend(p) = NewSequenceOfMessage),
PreReceive(p) = = not(PktBuf~p) = NewSequenceOfPacket),
PreRelease(p) = = not(Received(p) = NewSequenceOfPacket)

and (RSN(p) in Seq(Received(p))),
PreUpdate(p) == not(Pending(p) = NewSequenccOfPacket)

and not(AckBufgp) =NewSequenceOflnteger)
and Seq(Firsr4Pending(p))) = First(AckBuftp)).

PreResend(p) = = not(Pending(p) = NewSequenceOfPacket)
and not(Lost(p) = NewSequenceotinteger)
and Seq(First(Pending(p))) in Losr~p),

PreLosePkt(p) = =(ToLose(p) >0)
and not(PktBuRP) = NewSequenceOfPacket),

PreLoseAck(p) = = (ToLose(p) >0)
and not(AckBu ftp)=NewScqucnceOflnteger);

axioms

ToSend(InitialProtocol) = InitialSequencetMessage,
ToSend(Send(p)) = = if PreSend(p)

then LessFirst(ToSend(p))
else ToSend(p).

ToSend(Others(p))= = ToSend(p);

axioms

* Released(lnitialProtocol) = = NewSequenceOfMessage,
Released(Receive(p)) = = Released(p),
Released(Releasc(p)) = = if PreR -lease(p)

then Relcased(p) apr Tcxt(Such(Received(p),RSN(p)))
else Released(p).

Released(Othersp)) =Rcleased(p),

axiom
Pcnding(lnitialProtocol) ==NewScquenceOfPacket,

Pending(Send(p)) = = if PreSend(p)
then Pending(p) apr Pack(SSN(p).First(ToSend(p)))
else Pending(p),

Pending(Update(p)) =if PreUpdate(p)
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then LcssFirst(Pending(p))
else Pending(p),

cnding(Rescnd(p))= 
= if PreResend(p)

else Pending(p),
Pending(Oihers(p)) ==Pcnding(p)-,

axioms
Reccived(initialProtocol)= = NewScquenceOfPacket.
Reccivcd(Receivc(p)) = = if PreReccive(p)

then if (Seq(First(PktBut~p))) ge RSN(p))
and not (Seq(First(PktBut~p))) in Seq(Received(p)))

then Reccived(p) apr First(PktBuf~p))
else Receivcd(p)

else Rcceived(p),
Received(Release(p)) = =if PreRclease(p)

then Received(p) Except Such(Receivcd(p),RSN(p))
else Received(p),

Received(Others(p))= = Received(p):,

axioms
LostolnitialProtocol) = = NewSequence~finteger,
Lost(Resend(p)) = = if PrcResend(p)

then Lost(p) Except Seq(First(Pending(p)))
else Lost(p).

Lost(LosePkt(p)) = = if PreLosePkt(p)
then Lost(p) apr Seq(First(PktBuffp)))
else Lost(p).

Lost(LoseAck(p)) = = if Prel-oseAck(p)
thelf Lost(p) apr First(AckBuftp))
else Lost(p).

Lost(Others(p)) = Lost(p):
axioms

PktBuffInitialProtocol) = = NewSequenceOfPacket,
PktBuf(Send(p)) = = if PreSend(p)

then PktBuf~p) apr Pack(SSN(p).First(ToSend(p)))
else PktBuf(p),

PktBuff(Receive(p))= = if PreReceive(p)
then LessFirst(PktBuff p))
else PktBufqp).

PktBufRResend(p)) = = if PreResend(p)
then PktBuf~p) apr First(Pending(p))
else PktBuf~p),

PktBuffLosePkt(p)) = =if PreLosePkt(p)
then LessFirst(PktBugp))
else PktBuf~p).

PktBufROther3(p))= = PktBuf~p):,

axioms
AckBufqlnitialProtocol) ==NewSequence~flnteger,

AckBufRReceive(p)) = = if PreReceive(p)
then AckBut~p) apr Seq(First(PktBuf~p)))
else AckBufrp),

AckButRUpdate(p)) = =if PreUpdate(p)
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then LessFirst(AckBuftp))
cisc AckBuftp),

AckBuftLoscAck(p)) = =if PreloscAck(p)
then LessFirst(AckBuftp))
clsc AckBuffp).

AckBuft~ihers(p))= AckBuftp):,
axioms

SSN(InitialProtocol) ==0.

SSN(Send(p)) = = if PreSend(p)
then SSN(p) + 1
else SSN(p).

SSN(Ohersp))= SSN(p):,
axioms

RSN(InitialProtocol)= 0,
RSN(Reccive(p)) = = RSN(p),
RSN(Release(p)) = = if PrcRelease(p)

then RSN(p) +I
cise RSN(p),

RSN(Oihers(p)) = RSN(p);

axioms
ToLose(InitialProtocol) ==ToLoseNumb,

ToLose(Losefkt(p)) ==if PrelosePkcqp)
then ToLose(p)-I
else ToLose(p),

ToLose(LoseAck(p)) = =if PrcLoseAck(p)
then ToLose(p)-1
else ToLose(p),

ToLose( Others(p)) = = ToLosc(p);

schema

SelectivcRcpcatProtocollnduction(pp) = = cases( Prop(]lnitialProtocol),
all p(IH(p) imp Prop(Send(p))).
all p(IH(p) imp Prop(Receive(p))),
all p(IH(p) imp Prop(Release(p))).
all p(IH(p) imp Prop(Update(p))).
all p(IH(p) imp Prop(Resend(p))),
all p(IH(p) imp Prop(LosePkt(p))),
all p(I H(p) imp Prop(LoseAck(p))))X;

00 end:
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APPENDIX 3
Proof Transcripts of the SimpleProtocoi Theorems

AM. Additional definitions

The following are additional definitions to the SimpleProtocol specification presented in Section 4.Ths
operators will help in expressing the theorems.

edit SimpleProtocol:
interfaces Progress(p), Final(p), TermCondScnd(p). TerrnCondReceive(p): Booleon;

interface Measure(p): Imzteger

define

Progress(p) ==(ToSend(p) = NcwSequcncelMessage
imp Transit(p) - = NewSequenceOflvessage).

Final(p) =(Received(p) = lnitialSequenceOfMessage),

Measure(p) ==Lcngth(Transitp)) + Length(ToSend(p)) 2.

TermCondSend(p) = (PreSend(p)
imnp Measure(Send(p)) < Measure(p)),

TermCondReceive(p) = = ( PreReceive(p)
imp Measure(Receive(p)) < Measure(p));

end:

A3.2 Proof transcripts

This section contains the proof transcripts, as output by Affirm. of the SimnpleProtocol correctness theorems
and the lemmas for the types Sequence~fjIkssage and litleger.

Siwnpleftrocol theorems

theorem TransferCorrect,
Received (p) = Initial(InitialScquenceOfMcssage, Length(Received(p))).

TransferCorrect uses TransferLemma! and InitialLemma!.

proof tree:
66:! TransfeiCorrect

apply TransferLemma
.467: 6 pt p' p360: 7 replace InitialSequenceOfT~essage

507: 227 apply InitialLemma
508: 231 put (s = Received(p))

and (se = Transit(p) join ToSend(p))
508: (proven!)

assume TransferLemma.
(Received(p) join Transit(p)) join ToSend(p)

= lnitialSequenceOfMessage:

assume InitialLemma, Initial(s join s', Length(s)) = s

............... r
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theorem TtansfrrlAmna.
(Reccived(p) join Transit(p)) join ToSend(p)

I nitialSequcnce~flessagc:

Transferlcemma uses ApiSplit! and JoinSubsti.

741Trans'erLemrna
employ SimpleProtocollnduction(p)

lnitialProtocol:
immediate

75: Send:
31 cases

76: 33 apply ApiSpHt
77: 35 puts =To0end(p)
78: 36 replace

(proven!)
80: Receive: {Transferl-emma

32 cases
81: 37 apply ApISplit
82: 38 pus ransit(p)
85:-> 39 apply=JoinSubst
86: 41 put s = First(Transit(p)) apl LessFirst(Transit(p))

and (se Transit(p))

87: 42 replace ns" Tedp)

(proven!)

assume ApSplit, s - = NewSequenceOflhessage
imp First(s) apI LessFirst(s) = s:

assume JoinSubst, s=s7 imp s join s" = s' join s"-,

theorem DeadlockFreeness, -Progress(p) imp Final(p);

DeadlockFreeness uses TransferLemma!.

171DeadlockFreeness
invoke Progress

179: 85 invoke Final
180: 86 apply TransferLemma
181: 87 put p'=p,
182: 88 replace

(proven!)

assume TransferLemma. (Received(p) join Transit(p)) join ToSend(p)
-InitialSequencefMessage;

theorem Terninution, (Measure(p) > 0)
and TennCondSend(p) and TemiCondReceive(p);

Termination uses LengthNonNeg!, ProdNonNeg%. and LengthLessFirst!.

p roof tree:
192:! Termination

193: Tnt:
89 split

194: iks:
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91 invoke Measure
195: 93 apply LengthNonNeg
1%: 94 puts = Transit(p)
222: 95 apply Lecn tNonNeg
223: 104 put s = ' IoSend(p)
224: 105 apply ProdNonNe
225: 106 put (u = Icngth(TSend(p))) and (v =2)
226: 107 normint

(provenI
233: second: fTcrmination, first:

92 invoke TermCondSend
236: 108 invoke Measurelalli.
237: 109 apply LengthLessFirst
238: 111 puts = ToSend(p)
239: 112 replace

(proven!)
241: second: {Termination

90 invoke TermnCondReceive
242: 113 invoke MeasurelalII
243: 114 apply LengthLesspirst
244: 115 puts = Transit(p)
245: 116 replace

(proven!)

assume LengthNonNeg. Length(s) > =0:

assume ProdNonNeg. (u > = 0) and (v > = 0) imp u~v > =0:,

assume LengthLessFirst, s - = NewSequenceOfMcssage
imp Length(LessFirst(s)) = Length(s) - 1-,

SequeaceOfMessage lemnwas

theorem InitialLemma, lnitial(s join s', Length(s)) = s
InitialL-emma uses LcngthApl! and LengthNonNeg!.

proof tree:
510:! InitialL-emma

employ FirstInduction(s)
511: NewSequenceOfMessage:

233 invoke Initial
511: (proven!)
514: :apF

23 invoke Initial
515: 235 cases
518: 236 apply L-engthApI
519: 237 put (i =if') and (s ss')
520: 238 replace
521: 239 apply LengthNonNeg
522: 240Oput s =ss'
523: 241 invoke IH
528: 242 put s =s'
529: 243 replace
.> (proven!)

assume LengthApl. Length(i apI s) =Length(s) + 1:

assume Length NonNeg, Length(s) > =0;
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theorem ApiSplit. s - =NcwSequcncceMessage

imp First(s) api LessFirst~s) =s:

p roof trce:
89:' ApISpi~t

employ Induction(s)
NcwScquenceOf~lcssagc:

immediate
90: apr:

43 cases
91: 44 invoke 1H-
91: (proven!)

theorem JoinSubst. s =s' imp s join s* s'join s":
p roof tree:
94:! J oinSubst

employ Induction(s'")
NcwAScquenice~fMcssage:

immediate
95: apr:

46 invoke IH
%W 47 replace

(proven!)

theorem bengthApl. Lcngth(i api s) =Length(s) + 1:

proof tree:
449:! LengthApl

ernplay Induction(s)
New equenceOfM essage:

immediate
450: apr:

209 invoke IH
451: 210puti'=i *
452: 211 replace

(proven.)

theorem LcngthLessFirst, s - = NewSequenceOfMcssage
imp I-ergth(LessFirst(s)) =Length(s) - 1:

2521 LengthLessFirst
emp lay Induction(s)

NewSequenceOfMessage:
-~ immediate

253: apr:
119 cases

254: 120 invoke IH
255: 121 replace

(proven!)

theorem LengthNonNeg, Length(s) > =0:

2471 LengthNonNe~
employ Induct.ion(s)

NewSequenceONsae
immediate esae

248: aor:

249: 118 normint
(proven!)
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Integer lemmas

theorem ProdNonNeg. (u >= 0) and 6>= 0) imp u~v >= 0;

p roof trec:
135:! ProdNonNcg employ Induction(v')

0:
Immediate

136: DIF-FERENCE
45 invoke first IH

137: 47 put u'= u
138: 48 normint
138: (proven!)
140: PLUS:{(ProdNonNeg

46 invoke first IH
141: 50 put u'=u
142: 51 norrnint
142: (proven!)
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